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Abstract— Intrusion detection system has become the prime 
focus in the area of network security research. An effective 
intrusion detection system must detect the previously known 
attacks as well as variations of known attacks and unknown 
attacks. The challenging and critical problem in intrusion 
detection is the classification of intrusion attacks and normal 
network traffic. Fuzzy systems have been used to solve several 
classification problems. Genetic-fuzzy systems hybridize the 
approximate reasoning method of fuzzy systems with the 
learning capability of evolutionary algorithms. In this paper a 
novel intrusion detection method is presented, capable of 
detecting normal and intrusive behaviours, which extracts 
both accurate and interpretable fuzzy IF-THEN rules from 
network dataset for classification. This method uses the fuzzy 
association rule based classification method for high 
dimensional problems based on three stages to obtain an 
accurate and compact fuzzy rule based classifier with a low 
computational cost. Experiments were performed with KDD-
cup 99 dataset, which contains information of computer 
networks, during normal and intrusive behaviours. The result 
of the proposed intrusion detection model is compared with 
some well-known classifiers. 

 
Keywords— Intrusion detection, Genetic-fuzzy rule based 
classification, Fuzzy association rules, KDD-cup 99. 

I. INTRODUCTION 

Intrusions refer to the actions; attempt to compromise the 
integrity, confidentiality or availability of a resource [1]. It 
is the act of a person or proxy attempting to break into or 
misuse one’s system in violation of an established policy. 
Intrusions result in services being denied, system failing to 
respond, data stolen or being lost. Intrusion detection means 
detecting unauthorized use of a system or attacks on a 
system or network. An Intrusion Detection System monitors 
and restricts user access to the computer system by 
applying certain rules. 

Based on analysis strategy, Intrusion detection system is 
categorized into misuse and anomaly IDS. When the IDS 
looks for events or sets of events that match a predefined 
pattern of a known attack, this analysis strategy is called 
misuse detection. The effectiveness of misuse IDS is 
largely based on the validity and expressiveness of their 
database of known attacks and misuse, and the efficiency of 
the matching engine that is used. The disadvantage of 
misuse IDS is that it requires frequent updates to keep up 
with the new stream of vulnerabilities discovered and it 
cannot detect unknown attacks. When the IDS identifies 
intrusions as unusual behaviour that differs from the normal 

behaviour of the monitored system, this analysis strategy is 
called anomaly detection. Anomaly detection approaches 
attempt to build some kind of a model over the normal data 
and then check to see how well new data fits into that 
model. In other words, anything that does not correspond to 
a previously learned behaviour is considered intrusive. 
Therefore, the intrusion detection system might not miss 
any attack, but its accuracy is a difficult issue, since it can 
generate a lot of false alarms. 

One of the most effective methods to automate and 
simplify the development of intrusion signatures, and to 
predict novel attacks is learning classification rules from 
network data, if the generalized knowledge can be extracted 
from data. Fuzzy rule based classification systems 
(FRBCSs) are well known tools in the machine learning 
framework, since they can provide interpretable model [2]. 
Association discovery is one of the most common data 
mining techniques which are used to extract relationships 
between different items in a large dataset [3]. It has been 
used for classification under the name of associative 
classification [4]. Genetic algorithms have been used for 
rule generation and optimization methods in the design of 
fuzzy rule based classifier [5]. The genetic algorithm based 
design of FRBCSs is usually referred as GFRBCSs. 

Genetic-fuzzy rule based classification and data mining 
have been used previously to solve the intrusion detection 
problem. In [6], a data mining framework is proposed for 
constructing intrusion detection models. In [7], a prototype 
IIDS (Intelligent Intrusion Detection System) is proposed, 
which is both anomaly and misuse detector. The anomaly-
based components are developed using fuzzy data mining 
techniques. The method EFRID, proposed in [8], classifies 
the system behaviour by fuzzy rules. In [9], a multi-
objective genetic fuzzy intrusion detection system 
(MOGFIDS) is proposed which applies an agent-based 
evolutionary computation framework to generate and 
evolve an accurate and interpretable fuzzy knowledge base 
for classification. In [10], authors proposed a novel fuzzy 
method with genetic algorithm for detecting intrusion data 
from the network database. In this approach GA is 
implemented using directed graph structures instead of 
strings in genetic algorithm or trees in genetic programming, 
which leads to enhancing the representation ability with 
compact programs derived from the reusability of nodes in 
a graph structure. In [11], the IDS uses fuzzy association 
rules for binding fuzzy classifiers. In this method an 
immune-inspired algorithm is proposed for mining fuzzy 
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association rule set, in which the fuzzy sets corresponding 
to each attribute and the final fuzzy rule set can be directly 
extracted from a given dataset. In [12], a hybrid fuzzy 
genetic rule based inference engine has been designed. The 
fuzzy logic constructs precise and flexible patterns while 
the GA helps in attaining optimal solution. 

This paper presents an approach to IDS using genetic-
fuzzy rule based system and association discovery. The 
experiments were performed out on KDD-cup 99 dataset 
[13] and the results were compared with some well-known 
IDS classifiers. 

II. PRELIMINARIES 

This section discusses fuzzy rule based classification 
systems and fuzzy association rules for classification. 

A. Fuzzy Rule Based Classification 

Any classification problem consists of N training 
patterns, i.e., xp = (xp1, . . . ,xpm ), p = 1, 2, . . .,N; from S 
classes, where xpi is the ith attribute value (i = 1, 2, . . .,m) of 
the pth training pattern. Fuzzy rule of the classifier is of the 
following form: 

Rule Rj: IF x1 is Aj1 and · · · and xm is Ajm 
THEN Class = Cj with RWj 

where, Rj is the label of the jth rule, x = (x1, . . . , xm) is an 
m-dimensional pattern vector, Aji is an antecedent fuzzy set, 
Cj is a class label, and RWj is the rule weight. 

The performance of fuzzy rule-based classifiers depends 
on the rule weight of each fuzzy rule Rj [14]. The most 
common rule weight is the fuzzy confidence value or 
certainty factor (CF) [15]. ܴ ௝ܹ = ௝ܨܥ = ∑ ఓಲೕ൫௫೛൯ೣ೛∈಴೗ೌೞೞ	಴ೕ∑ ఓಲೕ൫௫೛൯೛ಿసభ           (1) 

where, ߤ஺ೕ൫ݔ௣൯  is the matching degree of the pattern xp 

with the antecedent part of the fuzzy rule Rj. Fuzzy 
reasoning method of the weighted vote or additive 
combination is used to classify new patterns by the rule 
base [16]. With this method, each fuzzy rule casts a vote for 
its consequent class. The total strength of the vote for each 
class is computed as follows: ஼ܸ௟௔௦௦೓൫ݔ௣൯ = ∑ .௣൯ݔ஺ೕ൫ߤ ௝ோೕ∈ோ஻;஼ೕୀ௛ܨܥ                   (2) 

The new pattern xp is classified as the class with the 
maximum total strength of the vote. If multiple class labels 
have the same maximum value for xp or no fuzzy rule is 
compatible with xp, this pattern is classified as the class 
with most patterns in the training data. 

B. Fuzzy Association Rules for Classification 

A fuzzy association rule can be considered to be a 
classification rule if the antecedent contains fuzzy item sets, 
and the consequent part contains only one class label (C = 
{C1, . . , Cj , . . , CS }). A fuzzy associative classification 
rule, i.e., Aj ⇒ Cj, can be measured directly in terms of 
support and confidence [17]. Support measures the 
reliability by the relative frequency of co-occurrences of the 
rule’s item. Confidence measures the rule accuracy. 

Support൫A୨ ⇒ C୨൯ = ∑ ஜఽౠ൫୶౦൯౮౦∈ిౢ౗౩౩	ిౠ୒            (3) 

Conϐidence൫A୨ ⇒ C୨൯ = ∑ ஜఽౠ൫୶౦൯౮౦∈ిౢ౗౩౩	ిౠ∑ ஜఽౠ൫୶౦൯౮౦∈౐            (4) 

where, T is the dataset. 

III. PROPOSED IDS 

This section describes the proposed method of intrusion 
detection. This method is based on the following three 
stages: 

1) Listing of all frequent fuzzy item sets: A search tree 
is employed to list all the possible frequent fuzzy 
item sets and to generate fuzzy association rules for 
classification. 

2) Selection of candidate fuzzy association rules: A 
rule evaluation criterion is used to preselect 
candidate fuzzy association rules. 

3) Genetic rule selection and lateral tuning: The best 
cooperative rules are selected and tuned by means of 
a GA, considering the positive synergy between both 
techniques within the same process. 

A. Listing of all Frequent Fuzzy Item Sets 

A search tree is employed to list all the possible fuzzy 
item sets of a class for rule base generation. The root or 
level 0 of the search tree is an empty set. The order of 
attributes (features of network connection) is according to 
their appearance in the training data, and the one-item sets 
that correspond to the attributes are listed in the first level 
of the search tree according to their order. If an attribute has 
j possible outcomes (j linguistic terms for each quantitative 
attribute), it will have j one-item sets that are listed in the 
first level. The children of a one-item node for an attribute 
are the two-item sets that include the one-item set of that 
attribute and a one-item set for another attribute behind that 
attribute in the order, and so on. If an attribute has j > 2 
possible outcomes, it can be replaced by j binary variables 
to ensure that no more than one of these j binary attributes 
can appear in the same node in a search tree. In this method 
five fuzzy linguistic terms Low, Low Medium, Medium, 
Medium High and High, are used for quantitative attributes. 
An example with two attributes V1 and V2 with two 
linguistic terms L (Low) and H (High) is depicted in Fig. 1. 

An item set with a support higher than the minimum 
support is a frequent item set. If the support of an n-item set 
in a node J is less than the minimum support, it does not 
need to be extended more because the support of any item 
set in a node in the sub tree, which is led by node J, will 
also be less than the minimum support. Likewise, if a 
candidate item set generates a classification rule with 
confidence higher than the maximum confidence, this rule 
has reached the quality level that is demanded by the user, 
and it is again unnecessary to extend it further. The 
maximum confidence value is taken 0.8. These properties 
greatly reduce the number of nodes needed for searching. 
The fuzzy support of an item set can be calculated as: 
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Support(A) = ∑ ஜఽ൫୶౦൯౮౦∈౐୒              (5) 

where, μ୅൫x୮൯  is the matching degree of the pattern 
(connection in a network dataset)xp with the item set, T is 
the training network dataset and N is the number of 
connections in T. The matching degree μ୅൫x୮൯ of xp to the 
different fuzzy regions is computed by the use of a 
conjunction operator, in this case, the product T-norm. 

 

Fig. 1 Search tree for two quantitative attributes V1 and V2 with two 
linguistic terms L and H 

Once all frequent fuzzy item sets have been obtained, the 
candidate fuzzy association rules for classification can be 
generated, setting the frequent fuzzy item sets in the 
antecedent of the rules and the corresponding class in the 
consequent. This process is repeated for each class. 

The number of frequent fuzzy item sets that are extracted, 
depends directly on the minimum support. This algorithm 
determines the minimum support of each class (normal and 
attack types) by the distributions of the classes over the 
dataset. Thus, the minimum support for class Cj is defined 
as: 

MinimumSupportCj = minSup * ƒCj         
(6) 

where, minSup is the minimum support, taken 0.05, and ƒCj 
is the pattern ratio of the class Cj . 

In this stage, a large number of candidate fuzzy 
association rules are generated for classification. To 
generate short fuzzy rules with only a small number of 
antecedent conditions, the depth of the trees is limited to a 
fixed value that is 3 in our approach. 

B. Selection of Candidate Fuzzy Association Rules 

To reduce the computational costs of next stage, 
subgroup discovery is used to preselect the most interesting 
rules from the RB, which are obtained in the previous stage, 
by means of a pattern weighting scheme. In this scheme the 
patterns are treated in such a way that covered positive 
patterns are not deleted when the current best rule is 
selected. Instead, each time a rule is selected, the algorithm 
stores a count i for each pattern of how many times (with 
how many of the selected rules) the pattern has been 
covered. 

By using the formula w(ej,i) = 1/i+1, weights of positive 
patterns covered by the selected rule is decreased . In the 
first iteration, all target class patterns are assigned the same 
weight, i.e., w(ej,0)=1, while in the following iterations the 
contributions of patterns are inversely proportional to their 
coverage by previously selected rules. This way, the 
patterns that are already covered by one or more selected 
rules decrease their weights while uncovered target class 
patterns whose weights have not been decreased will have a 
greater chance of being covered in the following iterations. 
Covered patterns are completely eliminated when they have 
been covered more than two times. 

Thus, in each iteration of the process, the rules are 
ordered according to a rule evaluation criterion from best to 
worst. The best rule is selected, covered patterns are 
reweighted, and the procedure repeats these steps until one 
of the stopping criteria is satisfied: either all patterns have 
been covered more than two times, or there are no more 
rules in the RB. This process is to be repeated for each class. 

 Fuzzy rules are handled using the weighted 
relative accuracy (WRAcc) measure, which is a modified 
measure used to evaluate the quality intervalar rules in 
APRIORI-SD [18]. The modified measure is as follows: WRAcc(A ⇒ C୨) = ୬"(୅∙େౠ)୬’(େౠ) ∙ ቀ୬"(୅∙େౠ)୬"(୅) − ୬(େౠ)୒ ቁ     (7) 

where, n(Cj) is the number of patterns of class Cj , N is 
the number of all patterns, n'' (A) is the sum of the products 
of the weights of all covered patterns by their matching 
degrees with the antecedent part of the rule, n''(A·Cj) is the 
sum of the products of the weights of all correctly covered 
patterns by their matching degrees with the antecedent part 
of the rules, and n' (Cj ) is the sum of the weights of patterns 
of class Cj. 

C. Genetic Rule Selection and Lateral Tuning 

An excess number of rules may not produce good 
performance and it makes difficult to understand the model 
behaviour. To select and tune a compact set of fuzzy 
association rules with high classification accuracy from the 
rule base, a GA model is used, where rules are based on the 
linguistic two tuple representation [19]. The symbolic 
translation parameter of a linguistic term is a number within 
the interval [−0.5, 0.5) that expresses the domain of a label 
when it is moving between its two lateral labels. If S is set 
of labels representing a fuzzy partition, then there is a pair 
(Si, αi), Si∈S, αi ∈ [−0.5, 0.5). Figure 2 shows the symbolic 
translation of a linguistic term. 

L H 

V1 

 {} 

  

 
V1.L     V2.L V

2
.H 

  V1.L V2.L   V
1
.L V

2
.H   V

1
.H V

2
.L   V

1
.H V

2
.H 

 V2H 

L H 

V
2
 

Prabhat Prakash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7184-7190

www.ijcsit.com 7186



 

Fig. 2  Symbolic translation of a linguistic term 

A specific GA, the CHC algorithm [20] is used. The 
CHC algorithm is a GA that presents a good trade-off 
between exploration and exploitation, making it a good 
choice for problems with complex search spaces. This 
genetic model makes use of a mechanism of selection of 
populations in order to perform an adequate global search. 
The CHC approach makes use of an incest prevention 
mechanism and a restarting process to encourage diversity 
in the population, instead of the well-known mutation 
operator. This incest prevention mechanism will be 
considered in order to apply the crossover operator, i.e., two 
parents are crossed if their hamming distance divided by 2 
is more than a predetermined threshold L. This threshold 
value is initialized as the maximum possible distance 
between two individuals (the number of non-matching 
genes in the chromosome) divided by 4. Following the 
original CHC scheme, L is decremented by 1 when there 
are no new individuals in the population in one generation. 
In order to make this procedure independent of the number 
of genes in the chromosome, in this case, L will be 
decremented by φ% of its initial value (where φ determined 
by the user, usually 10%). When L is below zero, the 
algorithm restarts the population. 

Scheme of this GA is as follows: 

1) Codification and initial gene pool: To combine the 
rule selection with the global lateral tuning, a double 
coding scheme for both rule selection CS and lateral 
tuning CT is used. For the CS part, each chromosome 
is a binary vector that determines when a rule is 
selected or not (alleles ‘1’ and ‘0’ respectively). 
Considering the M rules that are contained in the 
candidate rule set, the corresponding part, i.e., CS = 
{c1, .. . , cM }, represents a subset of rules composing 
the final RB so that IF ci = 1 THEN (Ri ∈	 RB) else 
(Ri ∉ RB), with Ri being the corresponding ith rule in 
the candidate rule set and RB being the final RB. For 
the CT part, a real coding is considered. This part is 
the joint of the α parameters of each fuzzy partition. 
If the no. of labels per variable is (m1, m2, . . . , mn ) 
with n being the number of system variables, then, 
this part has the following form, where each gene is 
associated with the tuning value of the 

corresponding label: CT = (c11, . . . , c1m1 , c21, . . . , 
c2m2 , . . . , cn1, . . . , cnmn ). Finally, a chromosome C 
is coded in the following way: C = CSCT. To make 
use of the available information, all the candidate 
rules are included in the population as an initial 
solution. To do this, the initial pool is obtained with 
the first individual having all genes with value ‘1’ in 
the CS part and all genes with value ‘0.0’ in the CT 
part. The remaining individuals are generated at 
random. 

2) Chromosome evaluation: To evaluate a determined 
chromosome penalizing a large number of rules, 
classification rate is computed and the fitness 
function is maximized. This function must be in the 
accordance with the framework of imbalanced 
datasets. Therefore the average of sum of correctly 
classified training patterns by the rules in the 
chromosome part CS is used as fitness function.
    Fitness(C) =∑ ୒େ୔(ୖ౟)ొ౨౩౟సభ୒౨౩            (8) where, Nrs 

is the number of rules in the rule set and NCP(Ri) is 
number of correctly classified training patterns. If 
there is at least one class without selected rules or if 
there are no covered patterns, the fitness value of a 
chromosome will be penalized with the number of 
classes without selected rules and the number of 
uncovered patterns. 

3) Crossover operator: The crossover operator will 
depend on the chromosome part where it is applied. 
In the CS part, the half-uniform crossover scheme 
(HUX) is employed. The HUX crossover exactly 
interchanges the mid of the alleles that are different 
in the parents (the genes to be crossed are randomly 
selected from among those that are different in the 
parents). This operator ensures the maximum 
distance of the offspring to their parents 
(exploration). For the CT part, the Parent Centric 
BLX (PCBLX) operator (an operator that is based 
on BLX-α) is considered. This operator is based on 
the concept of neighbourhood, which allows the 
offspring genes to be around the genes of one parent 
or around a wide zone that is determined by both 
parent genes. After crossover operation, four 
offspring are generated by the combination of the 
two from the part CT with the two from the part CS. 
The two best offspring obtained in this way are 
considered as the two corresponding descendants. 

4) Restarting approach: To get away from local optima, 
a restarting approach has been used. In this case, the 
best chromosome is maintained, and the remaining 
are generated at random. The restart procedure is 
applied when the threshold value L is below zero, 
which means that all the individuals coexisting in 
the population are very similar. 

 

0 1 2 3 4 

S1 S2 S
3
 S

4
 S

0
 

-1 -0.5 0.5 1

-0.3  

1.7  

(S2, -0.3) 

Prabhat Prakash et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7184-7190

www.ijcsit.com 7187



IV. EXPERIMENTATION  

Experiments were carried out on a subset of KDD-cup 99 
dataset and the results were compared with some well-
known IDS classifiers. 

A. KDD-cup 99 Dataset 

KDD-cup 99 dataset is made up of a large number of 
network connections related to normal and malicious traffic. 
KDD-cup 99 dataset is a version of the 1998 DARPA 
Intrusion Detection Evaluation Program, prepared and 
managed by MIT Lincoln Labs [21]. The 10% of KDD-cup 
99 dataset consists of 494021 single connection vectors. 
Each connection vector in KDD-cup 99 dataset has 41 
features and is labelled as either normal or an attack, with 
exactly one specific attack type. The 10% of the dataset 
contain a total number of 22 attack types as shown in table I. 

TABLE I 
INTRUSION CLASSES AND ATTACK TYPES 

 Sl. 
No. 

Intrusion Class Attack Types 

1 Denial of Service back, land, neptune, pod, 
smurf, teardrop 

2 Probe ipsweep, nmap, portsweep, 
satan 

3 Remote to Local ftp_write, guess_passwd, 
imap, phf, spy, warezclient, 
warezmaster 

4 User to Root buffer_overflow, 
loadmodule, multihop, perl, 
rootkit 

 
Since, the number of records in the 10% data set is very 

large (494,021) therefore; a subset of this large dataset has 
been used as train and test datasets. We have randomly 
selected 100 normal, 91 DoS, 80 Probe, 80 R2L and 59 
U2R records, total of 410 records. After selecting them, we 
randomized their orders of records. Training and test sets 
were created using 10-fold cross validation. The 
performance of IDS classifier is calculated as the average of 
these ten sets. 

B. Evaluation Metric 

The performance of the classifier is measured in the 
terms of precision, recall, F-measure and accuracy. They 
can be calculated using the confusion matrix [22]. A 
confusion matrix contains information about actual and 
predicted classification done by a classification system. 

Table II shows the confusion matrix for a two class 
classifier. 

TABLE II 
CONFUSION MATRIX FOR TWO CLASSES 

 Predicted class 

Positive Negative 

Actual 

Class 

Positive True Positive False Negative 

Negative False Positive True Negative 

 
Measures of performance defined as follows: 

1) Precision: Precision is the proportion of the 
predicted positive cases that were correct. 

Precision = TP/(TP+FP) 

2) Recall: Recall is the proportion of the positive cases 
that were correctly identified. 

Recall = TP/(TP+FN) 

3)  F-measure: The F-measure is the harmonic mean of 
recall and precision. 

         F-measure = 2*Precision*Recall/(Precision+Recall) 

4)   Accuracy: Accuracy is the proportion of total number 
of predictions that were correct. 

Accuracy = (TP+TN)/(TP+TN+FP+FN) 

C. Results 

Table III is the confusion matrix of the proposed IDS. 
The confusion matrix shows that 95% of the actual normal 
test data were detected to be normal; 90% of the actual 
probe test data were detected to be probe; 94.5% of DoS 
test data were detected to be DoS; 92.5% of the actual R2L 
test data were detected to be R2L and 86.4% of the actual 
U2R test data were detected to be U2R. Precision of the 
normal class is 87%, for probe 97.3%, for DoS 98.9%, for 
R2L 88% and for U2R is 92.7%. The overall accuracy of 
the IDS is 92.2%. 

The result of IDS proposed in this work is compared 
with some well-known IDSs. Table IV shows the 
comparison. Although the Proposed IDS used smaller 
percent of the original intrusion dataset, the performance 
measures are comparable with other IDSs.  
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TABLE III 
CONFUSION MATRIX OF PROPOSED IDS  

 Probe Normal DoS R2L U2R Recall% F-measure% 

Probe 72 6 0 2 0 90 93.5 

Normal 1 95 1 3 0 95 90.82 

DoS 1 4 86 0 0 94.5 96.6 

R2L 0 2 0 74 4 92.5 89.2 

U2R 0 3 0 5 51 86.4 89.4 

Precision% 97.3 87 98.9 88 92.7  

Accuracy% 92.2 
 
 

TABLE IV 
COMPARISON WITH OTHER WELL-KNOWN CLASSIFIERS 

 Metric Proposed 
IDS 

MOGFIDS 
[9] 

KDD-cup 99 
winner [23] 

EFRID 
[8]  

RIPPER 
[9] 

N
or

m
al

 Recall 95 98.36 99.5 92.78  

Precision 87 74.73 74.61   

F-measure 90.82 84.93 85.28   

P
ro

b
e 

Recall 90 88.59 83.3 50.35 81.16 

Precision 97.3 74.4 64.81  77.92 

F-measure 93.5 80.88 72.9  79.51 

D
oS

 Recall 94.5 97.2 97.1 98.91 22.06 

Precision 98.9 99.89 99.88  95.75 

F-measure 96.6 98.53 98.47  35.86 

R
2L

 Recall 92.5 11.01 8.4 7.41 8.33 

Precision 88 68.93 98.84  81.85 

F-measure 89.2 18.97 15.48  15.2 

U
2R

 Recall 86.4 15.78 13.2 88.13 11.84 

Precision 92.7 61.01 71.43  55.10 

F-measure 89.4 25.08 22.28  19.49 
The recall value of normal class of our IDS is 95%, which 
is better than EFRID (92.78%) but less than other classifiers. 
The less value of recall for normal class is due to the other 
classifiers were tested with dataset having large no. of 

normal connections. Precision (87%) and F-measure (90.82) 
value for normal class is better than other classifiers. For 
probe class, all three performance measures (recall 90.25%, 
precision 97.3% and F-measure 93.5%) are highest among 
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these IDS classifiers. For DoS class Recall and F-measure 
values (94.5%, 96.6% respectively) of our IDS are better 
than RIPPER (22.06%, 35.86% respectively). Precision 
value for DoS class (98.9%) is better than RIPPER but less 
than the other classifiers. Again, the less values of measures 
for DoS class, is due to the other classifiers are tested with 
dataset having large no. of DoS connections. For R2L recall 
and F-measure values (82.5%, 89.2%) are highest among 
all, and precision value is only less than the KDD-cup 99 
winner. For U2R all three measures (recall 86.4%, precision 
92.7% and F-measure 89.4%) are highest among all. 

From this comparison, we see that the result of the 
classification of our IDS is comparable and better in some 
cases. This is due to the fitness function used in the rule 
selection and lateral tuning stage in the algorithm. So, this 
classifier is suited for intrusion detection problem. 

V. CONCLUSION 

The result of the experiment demonstrated that fuzzy-
genetic based classification is an effective approach for 
intrusion detection. Comparison with other IDS classifiers 
has shown us that the proposed classification based IDS has 
potential to detect normal connection and attack types with 
good accuracy. The effectiveness in detection is due to the 
fitness function introduced for this intrusion detection 
model. Therefore, we can say that this classification model 
is effective in intrusion detection system. 
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